TRANSITION METAL CHEMISTRY II. SUBSTITUTION REACTIONS WITH TRIS(*p*-FLUOROPHENYL)PHOS-PHINE IN CARBONYL COMPLEXES OF THE TRANSITION METALS

F. T. DELBEKE AND G. P. VAN DER KELEN

Laboratory for General and Inorganic Chemistry-B, University of Ghent, Krijgslaan 105, Ghent (Belgium) (Received September 2nd, 1969)

SUMMARY

Substitution reactions between $(p-FC_6H_4)_3P(L)$ and several transition metal carbonyl compounds are described. The new compounds $L_3Fe(CO)_2$, $LCr(CO)_5$, trans- $L_2Cr(CO)_4$, trans- $L_2W(CO)_4$, cis- $L_2Mo(CO)_4$, $L_2Ni(CO)_2$ and $LNi(CO)_3$ are characterized by melting point, C,H analysis results and IR absorption frequencies in the CO absorption region.

In a previous report¹ the synthesis of several tris(*p*-fluorophenyl)phosphine substituted carbonyls of Fe, Mo and W was described. In this article we want to report on reactions with $(p-FC_6H_4)_3P$ (in the following text this compound will be named ligand L) yielding further substitution products of Fe(CO)₅ and of M(CO)₆ molecules (M=W, Cr, Mo) as well as on new substitution products obtained from Ni(CO)₄ with the same ligand.

TABLE I

TRIS(p-FLUOROPHENYL)PHOSPHINE TRANSITION-METAL CARBONYL COMPLEXES PREPARED

Compound	Analysis, found (calcd.) (%)		M.p. (°C)	IR CO absorption in nujol (cm ⁻¹)
	c	Н		
$[(p-FC_6H_4)_3P]_3Fe(CO)_2$	66.01 (67.01)	3.72 (3.61)	102.8	1982, 1928
(p-FC ₆ H ₄) ₃ PCr(CO) ₅	53.54 (54.34)	2.34	122-125	2064, 1978, 1947
trans-[$(p-FC_6H_4)_3P$] ₂ Cr(CO) ₄	59.02 (60.31)	2.97	185-189 dec.	1887
trans-[$(p-FC_6H_4)_3P$] ₂ W(CO) ₄	51.23 (51.74)	2.57	215-219 dec.	1887
cis-[(p-FC ₆ H ₄) ₃ P] ₂ Mo(CO) ₄	56.21	2.99	188-190 dec.	2021, 1917, 1883, 1852
$[(p-FC_6H_4)_3P]_2Ni(CO)_2$	60.72	3.25	116-118	2005, 1948
(p-FC ₆ H ₄) ₃ PNi(CO) ₃	(51.08) 55.70 (54.95)	2.67 (2.63)	149-150 dec.	2002, 2067

The new products are listed in Table 1 and characterized by their melting point, results of C and H analysis and the IR absorption bands in the CO vibration region. The IR spectra were recorded with a Perkin–Elmer model 225 spectrometer on nujol mulls of the substances. All operations are made in a protective nitrogen atmosphere.

EXPERIMENTAL

(1). Preparation of $L_3Fe(CO)_2$

 $C_7H_8Fe(CO)_2$ (0.104 mole), prepared according to the procedure elaborated by Manuel *et al.*², and L (0.104 mole) are dissolved in 150 ml 2,2,5-trimethylhexane which was previously deaerated by boiling in a nitrogen atmosphere for 2 h. The reaction mixture is heated to reflux temperature during 7 h and then cooled to -60° and filtered. A dark-coloured residue (A) and a redish brown filtrate (B) are obtained.

The filtrate (B) is evaporated and the resulting residue redissolved in a minimum quantity of CHCl₃. This solution is chromatographed on alumina. Elution with petroleum ether yields a yellow solution of $C_7H_8Fe(CO)_2$. The orange coloured band remaining on the column is then eluted with CHCl₃ and the eluate collected under a nitrogen blanket. After removal of CHCl₃ *in vacuo* and recrystallization of the residue from boiling petroleum ether 0.12 g of an orange-coloured substance are obtained, which was characterized as $L_3Fe(CO)_2$ (see Table 1).

The residue (A) is also subjected to chromatographic separation on an alumina column and petroleum ether used as the eluens. The eluate is evaporated *in vacuo* and the residue dissolved in a minimum amount of benzene. This solution is filtered and on adding twice its volume of petroleum ether and cooling to -12° 0.4 g of a yellow precipitate are obtained, which proved to be $L_2Fe(CO)_3^{-1}$.

The brown band remaining on the column was extracted with $CHCl_3$ and after evaporation of the solvent and recrystallization another quantity of 0.17 g of the same compound was obtained.

(2). Preparation of $LCr(CO)_5$

L (0.036 mole) and $Cr(CO)_6$ (0.035 mole) are dissolved in 150 ml of diglyme and refluxed for 4 h. The reaction mixture is then cooled, filtered and the solvens evaporated *in vacuo*. Threefold recrystallization from a mixture of chloroform/ethanol yields 8.34 g pale-yellow crystals which proved to be $LCr(CO)_5$.

(3). Preparation of trans- $L_2Cr(CO)_4$

For this synthesis a specially designed reaction tube, preventing the sublimation of the chromium hexacarbonyl at the end is used. $Cr(CO)_6$ (0.01 mole) and L (0.03 mole) are placed into it, and heated for 4 h at 170–200° in a nitrogen atmosphere. The contents of the tube are subsequently extracted with benzene, the solution is filtered and then evaporated *in vacuo*. The residue is treated with several small portions of ether to remove unreacted phosphine, filtered and again dissolved in a minimum amount of benzene. On adding twice the volume of C_2H_5OH and cooling to -12° a yellow precipitate is obtained which was freed from $Cr(CO)_6$ contaminant by sublimation. The sublimation residue is nearly pure *trans*-L₂Cr(CO)₄, with characteristics as reported in Table 1. In the IR spectrum a weak band at 2016 cm⁻¹ is observed and this is probably due to the *cis*-isomer. This impurity could be removed using the separation method of Grim³. A total amount of 0.25 g of pure *trans*- L_2 Cr-(CO)₄ was obtained.

Tentative preparations of $cis-L_2Cr(CO)_4$ and of $L_3Cr(CO)_3$ starting from $C_7H_8Cr(CO)_4$ and from $C_7H_8Cr(CO)_3$ along published procedures^{4,5} always resulted in the trans-L_2Cr(CO)_4.

(4). Preparation of trans- $L_2W(CO)_4$

This compound is obtained using the same method as for the chromium derivative from 0.01 mole of $W(CO)_6$ and 0.03 mole of L. However, the residue, obtained after the ether extraction, is now dissolved in acetone, followed by precipitation with ethyl alcohol, cooling to -12° and removal of unreacted $W(CO)_6$ by sublimation. trans $L_2W(CO)_4$ is yellow; a yield of 0.57 g was obtained.

(5). Preparation of $cis-L_2Mo(CO)_4$

A solution of 0.0017 mole $C_7H_8Mo(CO)_4^6$ and of 0.0075 mole L in 20 ml benzene is stirred for $1\frac{1}{2}$ h under nitrogen. A yellow precipitate gradually forms. This is filtered off, and washed with small portions of ether. A total amount of 0.78 g of the pure compound was isolated.

(6). Preparation of $L_2Ni(CO)_2$

The method elaborated by Rose and Statham⁷ was used for the synthesis of this complex. In a three-necked flask equipped with a nitrogen inlet, reflux condenser and pressure-equalized dropping funnel, is placed a solution of 0.05 mole L in 20 ml of dry and oxygen-free ether. This solution is heated to reflux temperature and meanwhile a solution of 0.0246 mole Ni(CO)₄, in the same solvent, is added carefully and dropwise. The reaction mixture is then heated for another hour to reflux temperature and then cooled to -30° . The yellow precipitate formed is filtered off and washed several times with ether; the yield was 4.78 g.

The IR spectrum of $L_2Ni(CO)_2$ shows two CO absorptions respectively at 2005 and 1948 cm⁻¹. The latter band however shows slight splitting so that the number of CO bands actually present becomes questionable. Meriwether and Fiene⁸ have found only two CO bands for $[(C_6H_5)_3P]_2Ni(CO)_2$.

Therefore a laser Raman spectrum of the solid substance was taken; only two peaks were observed (2004, 1947 cm⁻¹), thus removing any doubts about the number of CO bands. When, however, the laser Raman spectrum of a hexane solution is taken a new peak appears at 2071 cm⁻¹. The intensity of this peak increases as a function of time and the intensity of the 1947 cm⁻¹ peak decreases simultaneously. A Raman spectrum of a saturated solution of CO in hexane shows a peak at about 2070 cm⁻¹. We therefore think that on irradiation of carbonyl compounds (in CHCl₃, C₆H₆, cyclo-C₆H₁₂) with He/Ne laser light slight decomposition occurs locally, setting free some CO. Our experience has shown that this decomposition is not restricted to nickel carbonyls only but instead seems a property of many other carbonyl compounds.

(7). Preparation of $LNi(CO)_3$

The procedure of Meriwether⁸ whereby Ni(CO)₄ is reacted with a phosphine

in boiling super-dry alcohol always yielded a mixture of $LNi(CO)_3$ and $L_2Ni(CO)_2$. We therefore preferred Bigorgne's method⁹. Ni(CO)₄ (0.023 mole) is added dropwise at room temperature to a solution of 0.025 moles of L in dry ether. After completion of the addition the mixture is stirred for 2 h at room temperature. Evaporation of the ether solvent yielded a green residue which was washed several times with small portions of ether and 1.1 g of $LNi(CO)_3$ was obtained.

REFERENCES

- 1 F. T. DELBEKE, G. P. VAN DER KELEN AND Z. EECKHAUT, J. Organometal. Chem., 16 (1969) 512.
- 2 T. A. MANUEL AND F. G. A. STONE, J. Amer. Chem. Soc., 82 (1960) 371.
- 3 S. O. GRIM AND D. A. WHEATLAND, Inorg. Chem., submitted.
- 4 J. G. SMITH AND F. T. THOMPSON, J. Chem. Soc., A, (1967) 1694.
- 5 E. W. ABEL, M. A. BENNETT AND G. WILKINSON, J. Chem. Soc., (1959) 2323.
- 6 R. PETTIT, J. Amer. Chem. Soc., 81 (1959) 1266.
- 7 J. D. ROSE AND F. S. STATHAM, J. Chem. Soc., (1950) 69.
- 8 L. S. MERIWETHER AND M. L. FIENE, J. Amer. Chem. Soc., 81 (1959) 4200.
- 9 M. BIGORGNE, Bull. Soc. Chim. Fr., (1960) 1986.

J. Organometal. Chem., 21 (1970) 155-158